版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Grenoble 1 Spectrometrie Phys Lab F-38402 St Martin Dheres France
出 版 物:《EPL》 (欧洲物理学快报)
年 卷 期:2008年第83卷第6期
页 面:64001-64001页
核心收录:
主 题:Soft matter liquids and polymers Fluid dynamics Computational physics
摘 要:The effective viscosity of dilute and semi-dilute suspensions in a shear flow in a microfluidic configuration is studied numerically. The suspension is composed of monodisperse and non-Brownian hard spherical buoyant particles confined between two walls in a shear flow. An abrupt change of the viscosity behaviour occurs with strong confinements: when the wall-to-wall distance is below five times the radius of the particles, we obtain a change of the sign of the contribution of the hydrodynamic interactions to the effective viscosity. This effect is the macroscopic counterpart of the peculiar micro-hydrodynamics of confined suspensions due to the influence of walls. In addition, for higher concentrations (above 25%), we find that the viscosity meets a minimum when the inter-wall distance is around five times the sphere radius. This phenomenon is reminiscent of the Fahraeus-Lindqvist effect for blood confined in small capillaries. However, we show that for sheared confined semi-dilute suspensions, the physical origin of this minimum is not due to a migration effect but to the change of hydrodynamic interactions. Copyright (c) EPLA, 2008