咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Modeling the ultrasonic testin... 收藏

Modeling the ultrasonic testing echoes by a combination of particle swarm optimization and Levenberg-Marquardt algorithms

由粒子群优化和 Levenberg-Marquardt 算法的联合为超声的测试回响建模

作     者:Gholami, Ali Honarvar, Farhang Moghaddam, Hamid Abrishami 

作者机构:K N Toosi Univ Technol Fac Mech Engn NDE Lab 7 Pardis StMollasadra AveVanak Sq Tehran Iran K N Toosi Univ Technol Fac Elect Engn MVMIP Lab Shariati Ave Tehran Iran 

出 版 物:《MEASUREMENT SCIENCE AND TECHNOLOGY》 (测量科学与技术)

年 卷 期:2017年第28卷第6期

页      面:065001-065001页

核心收录:

学科分类:08[工学] 080401[工学-精密仪器及机械] 0804[工学-仪器科学与技术] 081102[工学-检测技术与自动化装置] 0811[工学-控制科学与工程] 

主  题:ultrasonic testing asymmetric Gaussian chirplet model (AGCM) Levenberg-Marquardt (LM) particle swarm optimization (PSO) SAGE algorithm 

摘      要:This paper presents an accurate and easy-to-implement algorithm for estimating the parameters of the asymmetric Gaussian chirplet model (AGCM) used for modeling echoes measured in ultrasonic nondestructive testing (NDT) of materials. The proposed algorithm is a combination of particle swarm optimization (PSO) and Levenberg-Marquardt (LM) algorithms. PSO does not need an accurate initial guess and quickly converges to a reasonable output while LM needs a good initial guess in order to provide an accurate output. In the combined algorithm, PSO is run first to provide a rough estimate of the output and this result is consequently inputted to the LM algorithm for more accurate estimation of parameters. To apply the algorithm to signals with multiple echoes, the space alternating generalized expectation maximization (SAGE) is used. The proposed combined algorithm is robust and accurate. To examine the performance of the proposed algorithm, it is applied to a number of simulated echoes having various signal to noise ratios. The combined algorithm is also applied to a number of experimental ultrasonic signals. The results corroborate the accuracy and reliability of the proposed combined algorithm.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分