版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Cent S Univ State Key Lab Powder Met Changsha 410083 Hunan Peoples R China
出 版 物:《JOURNAL OF APPLIED POLYMER SCIENCE》 (应用聚合物科学杂志)
年 卷 期:2006年第101卷第3期
页 面:1842-1847页
核心收录:
学科分类:081704[工学-应用化学] 07[理学] 08[工学] 0817[工学-化学工程与技术] 070303[理学-有机化学] 0703[理学-化学]
主 题:biomaterials mechanical property polyethylene composites biomineralization
摘 要:To improve the mechanical properties of hydroxyapatite (Ca-10(PO4)(6)(OH)(2);HAP)/High-density polyethylene (HDPE) composites, the process of in situ biomineralization was used, and its effect on the microstructure and mechanical properties of HAP/HDPE composite was investigated by means of Fourier transform infrared spectroscopy, energy dispersive X-ray analysis, scanning electron microscope, Instron testing machine, and Ceast Impact tester at room temperature. Results show that: (1) the HAP/HDPE composite prepared by in situ biomineralization has the better mechanical properties. The impact strength and the tensile strength reach 712 J/m and 96 MPa, respectively, which were more than three times higher than those of composites prepared by blending directly. (2) The biomineralized HAP crystals grew onto the HDPE with chemical bond and dispersed in HDPE polymer on the level of nanometer dimension, which provided a greater surface area for bonding with the polymer, accordingly enhancing the interfacial bonding strength. On the other hand, the higher interfacial bonding strength will produce interfacial stress from the contraction of matrix, which can strain-induce the crystallization of matrix to form the extended-chain crystal structure in the area surrounding the filler. As a result, the mechanical properties of composite improved greatly. (c) 2006 Wiley Periodicals, Inc.