版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:天津大学电气自动化与信息工程学院天津300072
出 版 物:《天津大学学报(自然科学与工程技术版)》 (Journal of Tianjin University:Science and Technology)
年 卷 期:2017年第50卷第8期
页 面:835-842页
核心收录:
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:乳腺磁共振图像 病灶分割 帧间相关性 超像素 水平集
摘 要:针对乳腺磁共振图像序列的肿瘤分割问题,提出一种基于超像素和改进C-V模型的三维全自动分割方法.该方法利用磁共振图像序列的帧间相关性,约束相邻帧图像的分割轮廓.采用超像素算法提取肿瘤的大致轮廓,再用改进的C-V水平集算法对可疑区域边缘进行优化,使其更接近肿瘤的实际边缘.将该方法及3种对比方法应用于89例乳腺MRI序列图像.以手动分割的轮廓为基准,该方法得到的平均重叠率为87.84%,,相比于C-V模型的58.90%,、超像素和水平集结合的76.36%,、K均值+C-V的83.62%,,有明显提升.实验结果表明,该方法的全自动分割结果对于肿瘤起始和终止帧图像具有较高的分割精度.