咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Improved predictions of wellhe... 收藏

Improved predictions of wellhead choke liquid critical-flow rates: Modelling based on hybrid neural network training learning based optimization

水源的改进预言窒息液体批评流动的率: 建模基于混合神经网络训练学习基于优化

作     者:Choubineh, Abouzar Ghorbani, Hamzeh Wood, David A. Moosavi, Seyedeh Robab Khalafi, Elias Sadatshojaei, Erfan 

作者机构:Petr Univ Technol Petr Dept Ahvaz Iran Islamic Azad Univ Young Researchers Club Omidiyeh Branch Omidiyeh Iran DWA Energy Ltd Lincoln England Shiraz Univ Petr Dept Shiraz Iran 

出 版 物:《FUEL》 (燃料)

年 卷 期:2017年第207卷

页      面:547-560页

核心收录:

学科分类:0820[工学-石油与天然气工程] 080702[工学-热能工程] 0817[工学-化学工程与技术] 08[工学] 0807[工学-动力工程及工程热物理] 

主  题:Liquid critical-flow rate Non-linear regression Artificial neural network Teaching-learning-based optimization Empirical wellhead coke flow rate published correlations Relevancy factor 

摘      要:Published relationships typically consider liquid critical-flow rate through wellhead chokes of producing oil wells as functions of wellhead pressure, choke size and gas-liquid ratio. Such correlations can be improved by taking into account three additional input variables: gas specific gravity, oil specific gravity and temperature. Novel liquid critical-flow rate models, hybridizing an artificial neural network (ANN) with a teaching-learning-based optimization (TLBO) algorithms, involving 3 and 6 input variables, demonstrate improved accuracy compared to nonlinear regression models, traditional ANN models and published correlations. The improved accuracy of the developed models is assessed statistically using a data set of 113 wellhead flow tests from oil wells in South Iran (with a full data listing included). The ANN-TLBO (6 parameters) developed model is the most accurate, yielding the best liquid critical-flow rate predictions for that data set: coefficient of determination of 0.981;root mean square error of 714;average relative error of 2.09%;and, average absolute relative error of 6.5%. The 6-parameters models outperform the 3-parameters models without over complicating model functionality. This justifies the consideration of all six input variables to deliver improved predictions of wellhead choke liquid critical-flow rates. Calculation of relevancy factors for the 6-parameters ANN-TLBO model to the data set for all six input variables reveals choke size and gas-liquid ratio have maximum and minimum influence in determining the liquid critical-flow rate, respectively. (C) 2017 Elsevier Ltd. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分