咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Optimizing top-k retrieval:sub... 收藏

Optimizing top-k retrieval:submodularity analysis and search strategies

优化 top-k 检索: submodularity 分析和搜索策略

作     者:Chaofeng SHA Keqiang WANG Dell ZHANG Xiaoling WANG Aoying ZHOU 

作者机构:School of Computer ScienceShanghai Key Laboratory of Intelligent Information ProcessingFudan University Shanghai Key Laboratory of Trustworthy ComputingEast China Normal University Department of Computer Science and Information SystemsBirkbeckUniversity of London 

出 版 物:《Frontiers of Computer Science》 (计算机科学前沿(英文))

年 卷 期:2016年第10卷第3期

页      面:477-487页

核心收录:

学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:was supported by the National Natural Science Foundation of China(Grant Nos.61572135 and 61170085) 973 project(2010CB328106) Program for New Century Excellent Talents in China(NCET-10-0388) 

主  题:top-k retrieval diversification submodular function maximization 

摘      要:The key issue in top-fc retrieval,finding a set of fc documents(from a large document collection) that can best answer a user s query,is to strike the optimal balance between relevance and *** this paper,we study the top-fc retrieval problem in the framework of facility location analysis and prove the submodularity of that objective function which provides a theoretical approximation guarantee of factor 1--for the(best-first) greedy search ***,we propose a two-stage hybrid search strategy which first obtains a high-quality initial set of top-fc documents via greedy search,and then refines that result set iteratively via local *** on two large TREC benchmark datasets show that our two-stage hybrid search strategy approach can supersede the existing ones effectively and efficiently.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分