咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Moving Object Detection Using ... 收藏

Moving Object Detection Using Tensor-Based Low-Rank and Saliently Fused-Sparse Decomposition

作     者:Hu, Wenrui Yang, Yehui Zhang, Wensheng Xie, Yuan 

作者机构:Chinese Acad Sci Inst Automat Beijing 100190 Peoples R China 

出 版 物:《IEEE TRANSACTIONS ON IMAGE PROCESSING》 (IEEE Trans Image Process)

年 卷 期:2017年第26卷第2期

页      面:724-737页

核心收录:

学科分类:0808[工学-电气工程] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:National Natural Science Foundation of China [61402480  61432008  61472423  61502495  61532006] 

主  题:Moving object detection tensor nuclear norm tensor total variation space-time visual saliency 

摘      要:In this paper, we propose a new low-rank and sparse representation model for moving object detection. The model preserves the natural space-time structure of video sequences by representing them as three-way tensors. Then, it operates the low-rank background and sparse foreground decomposition in the tensor framework. On the one hand, we use the tensor nuclear norm to exploit the spatio-temporal redundancy of background based on the circulant algebra. On the other, we use the new designed saliently fused-sparse regularizer (SFS) to adaptively constrain the foreground with spatio-temporal smoothness. To refine the existing foreground smooth regularizers, the SFS incorporates the local spatio-temporal geometric structure information into the tensor total variation by using the 3D locally adaptive regression kernel (3D-LARK). What is more, the SFS further uses the 3D-LARK to compute the space-time motion saliency of foreground, which is combined with the l(1) norm and improves the robustness of foreground extraction. Finally, we solve the proposed model with globally optimal guarantee. Extensive experiments on challenging well-known data sets demonstrate that our method significantly outperforms the state-of-the-art approaches and works effectively on a wide range of complex scenarios.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分