版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Osaka Univ Grad Sch Engn Sci Dept Informat & Math Sci Toyonaka Osaka 5608531 Japan Hiroshima City Univ Fac Informat Sci Dept Comp Sci Hiroshima 7313194 Japan
出 版 物:《IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES》 (电子信息通信学会汇刊:电子学、通信及计算机科学基础)
年 卷 期:2000年第E83A卷第11期
页 面:2329-2340页
核心收录:
学科分类:0808[工学-电气工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:linear block code sectionalization minimal sectionalized trellis generalized Viterbi algorithm computational complexity
摘 要:An algorithim for finding the optimal sectionalization for sectionalized trellises with respect to distinct optimality criterions was presented by Lafourcade and Vardy. In this paper, for linear block codes, we give a direct method for finding the optimal sectionalization when the optimality criterion is chosen as the total number \E\ of the edges, the expansion index \E\ - \V\ + 1, or the quantity 2\E\ - \V\ + 1, only using the dimensions of the past and Future sub-codes. A more concrete method For determining the optimal sectionalization is given for the Reed-Muller codes with the natural lexicographic coordinate ordering.