版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:1School of computer science and technology Chongqing University of Posts and Telecommunications Chongqing 400065 China 2Chongqing Engineering Research Center of Mobile Internet Data Application Chongqing 400065 China
出 版 物:《AIP Conference Proceedings》
年 卷 期:2018年第1967卷第1期
摘 要:Spark is a memory-based distributed data processing framework, has the ability of processing massive data and becomes a focus in Big Data. But the performance of Spark Shuffle depends on the distribution of data. The naive Hash partition function of Spark can not guarantee load balancing when data is skewed. The time of job is affected by the node which has more data to process. In order to handle this problem, dynamic sampling is used. In the process of task execution, histogram is used to count the key frequency distribution of each node, and then generate the global key frequency distribution. After analyzing the distribution of key, load balance of data partition is achieved. Results show that the Dynamic Re-Partitioning function is better than the default Hash partition, Fine Partition and the Balanced-Schedule strategy, it can reduce the execution time of the task and improve the efficiency of the whole cluster.