版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:北京科技大学计算机与通信工程学院北京100083
出 版 物:《物联网学报》 (Chinese Journal on Internet of Things)
年 卷 期:2018年第2卷第2期
页 面:65-72页
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家重点研发计划基金资助项目(No.2016YFC0901303)
主 题:不平衡数据 单类F-score特征选择 遗传算法 多层神经网络
摘 要:传统的不平衡数据分类问题往往会因为类间数据不平衡造成分类器的性能下降。利用AUC(ROC曲线下的面积)为评价指标,结合单类F-score特征选择和遗传算法建立多层神经网络模型,选出对于不平衡数据分类更有利的特征子集,从而建立更适用于不平衡数据分类的深度模型。基于Tensor Flow建立多层神经网络模型,通过对4组不同UCI数据集进行测试,并与传统的机器学习算法如朴素贝叶斯、K最近邻、神经网络等进行对比验证。实验证明,所提模型在处理不平衡数据分类问题上的表现更优秀。