咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Square-root lasso: pivotal rec... 收藏

Square-root lasso: pivotal recovery of sparse signals via conic programming

方形根的套索: 经由圆锥形的编程的稀少的信号的枢轴的恢复

作     者:Belloni, A. Chernozhukov, V. Wang, L. 

作者机构:Duke Univ Fuqua Sch Business Durham NC 27708 USA MIT Dept Econ Cambridge MA 02142 USA MIT Dept Math Cambridge MA 02139 USA 

出 版 物:《BIOMETRIKA》 (生物测量学)

年 卷 期:2011年第98卷第4期

页      面:791-806页

核心收录:

学科分类:0710[理学-生物学] 07[理学] 09[农学] 0714[理学-统计学(可授理学、经济学学位)] 

基  金:National Science Foundation, U.S.A Direct For Mathematical & Physical Scien Division Of Mathematical Sciences Funding Source: National Science Foundation Direct For Social, Behav & Economic Scie Divn Of Social and Economic Sciences Funding Source: National Science Foundation Divn Of Social and Economic Sciences Direct For Social, Behav & Economic Scie Funding Source: National Science Foundation 

主  题:Conic programming High-dimensional sparse model Moderate deviation theory 

摘      要:We propose a pivotal method for estimating high-dimensional sparse linear regression models, where the overall number of regressors p is large, possibly much larger than n, but only s regressors are significant. The method is a modification of the lasso, called the square-root lasso. The method is pivotal in that it neither relies on the knowledge of the standard deviation Sigma nor does it need to pre-estimate Sigma. Moreover, the method does not rely on normality or sub-Gaussianity of noise. It achieves near-oracle performance, attaining the convergence rate Sigma{(s/n) log p}(1/2) in the prediction norm, and thus matching the performance of the lasso with known Sigma. These performance results are valid for both Gaussian and non-Gaussian errors, under some mild moment restrictions. We formulate the square-root lasso as a solution to a convex conic programming problem, which allows us to implement the estimator using efficient algorithmic methods, such as interior-point and first-order methods.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分