版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:燕山大学信息科学与工程学院秦皇岛066004 河北省计算机虚拟技术与系统集成重点实验室秦皇岛066004
出 版 物:《中国生物医学工程学报》 (Chinese Journal of Biomedical Engineering)
年 卷 期:2012年第31卷第5期
页 面:712-719页
核心收录:
学科分类:08[工学] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学]
基 金:国家自然科学基金(60504035 61074195) 河北自然科学基金(F2010001281 A2010001124)
摘 要:在脑机接口(BCI)的研究中,通道在提取脑电信息的过程中起着十分关键的作用。本研究提出基于共空域子空间分解-微分进化算法(CSSD-DE)的脑机接口通道选择方法,并且使用逻辑线性分类器进行分类。在对皮层脑电信号(ECoG)进行通道选择的过程中取得了使用少数通道就可以达到令人满意的分类效果。当最优通道个数为6,识别正确率达到93%,优于2005年脑机接口竞赛III数据集I的第一名的正确率(91%)。并提出将最大相关最小冗余度(mRMR)和支持向量机回归特征消去(SVM-RFE)算法应用于通道选择进行对比,mRMR算法得出最优通道个数为7,识别正确率为87%,SVM-RFE算法得出的最优通道个数为6,识别正确率为81%。