版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Penn State Univ Dept Math State Coll PA 16803 USA
出 版 物:《ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS》 (理论力学与分析文献)
年 卷 期:2018年第230卷第3期
页 面:1103-1129页
核心收录:
学科分类:08[工学] 0701[理学-数学] 0801[工学-力学(可授工学、理学学位)]
基 金:National Science Foundation NSF (DMS-1405728 DMS 1764119 DMS-1405728 1764119)
主 题:INVISCID flow NAVIER-Stokes equations ANALYTIC geometry BOUNDARY layer (Aerodynamics) TANGENTIAL force FUNCTION spaces PRANDTL number
摘 要:In their classical work, Sammartino and Caflisch (Commun Math Phys 192(2):433-461, 1998a;Commun Math Phys 192(2):463-491, 1998b) proved the inviscid limit of the incompressible Navier-Stokes equations for well-prepared data with analytic regularity in the half-space. Their proof is based on the detailed construction of Prandtl s boundary layer asymptotic expansions. In this paper, we give a direct proof of the inviscid limit for general analytic data without having to construct Prandtl s boundary layer correctors. Our analysis makes use of the boundary vorticity formulation and the abstract Cauchy-Kovalevskaya theorem on analytic boundary layer function spaces that capture unbounded vorticity.