咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >WOAGA: A new metaheuristic map... 收藏

WOAGA: A new metaheuristic mapping algorithm for large-scale mesh-based NoC

WOAGA : 为大规模基于网孔的 NoC 印射算法的新 metaheuristic

作     者:Wang, Xilu Sun, Yongjun Gu, Huaxi Liu, Zujun 

作者机构:Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Shaanxi Peoples R China 

出 版 物:《IEICE ELECTRONICS EXPRESS》 (日本电子情报通信学会电子快报)

年 卷 期:2018年第15卷第17期

页      面:20180738-20180738页

核心收录:

学科分类:0810[工学-信息与通信工程] 0808[工学-电气工程] 08[工学] 081001[工学-通信与信息系统] 

基  金:National Science Foundation of China [61571340, 61634004] Fundamental Research Funds for the Central Universities [JB180309, JB170107] key research and development plan of Shaanxi province [2017ZDCXL-GY-05-01] General Armament Department and Ministry of Education United Fund [6141A0224-003] program of Introducing Talents of Discipline to Universities [B0803] 

主  题:network-on-chip mapping metaheuristic algorithm 

摘      要:The mapping of IP cores to the topology is one of the most important steps for NoC (Network-on-Chip) design. Metaheuristic algorithms (MAs) are widely employed since the mapping is an NP-hard problem. Most mapping algorithms only consider small-scale NoC and ignore stability. In this letter, a stable metaheuristic algorithm called WOAGA, based on Whale Optimization Algorithm (WOA) and Genetic Algorithm (GA), is proposed for large-scale NoC mapping to achieve the low-energy consumption and stability. In the proposed algorithm, irregular crossover and mutation operations are integrated into the modified WOA. A perturbation is utilized to jump out of local optima effectively. Simulation results show that the proposed algorithm is more stable and achieve better solution with energy consumption reduced significantly.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分