版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Electronics Telecommunication and Computer Dept. ISEL R.Conselheiro Emídio Navarro Lisboa Portugal CTS-UNINOVA Monte da Caparica Portugal ICEMS-Av Rovisco Pais Portugal Chemical Engineering and Biotechnology Research Center Instituto Superior Engenharia de Lisboa R.Conselheiro Emídio Navarro Lisboa Portugal
出 版 物:《MRS Online Proceedings Library》
年 卷 期:2009年第1153卷第1期
页 面:1-6页
主 题:biological sensor amorphous
摘 要:Progress in microelectronics and semiconductor technology has enable new capabilities in the field of sensor construction, particularly of pH sensors based on field-effect transistors (FETs) as transducers of chemical signal. While crystalline devices present a higher sensitivity, their amorphous counterpart present a much lower fabrication cost, thus enabling the production of cheap disposable sensors for use in the food industry. Interest in biosensors consisting of a semiconductor transducer and a functionalized surface with biomolecule receptors (BioFET) continues to grow as they hold the promise for highly selective, label-free, real-time sensing as an alternative to conventional optical detection techniques. We have been involved in the development of a biosensor where the enzymatic activity of recombinant amidase from Escherichia coli is coupled to a semiconductor transducer for the detection of toxic amides in food and industrial effluents. The devices were fabricated on glass substrates by the PECVD technique in the top gate configuration, where the metallic gate is replaced by an electrolytic solution with an immersed Ag/AgCl reference electrode. Silicon nitride is used as gate dielectric enhancing the sensitivity and passivation layer used to avoid leakage and electrochemical reactions. In this article we report on the semiconductor unit, showing that the sensor displays the desired current-voltage characteristics. In addition we present an electrical model of the device, in agreement with the experimental data, that is sensitive to the pH of the solution.