版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Marne La Vallee Lab Anal & Math Appl UMR 8050 F-77454 Champs Sur Marne 2 Marne La Valle France
出 版 物:《POSITIVITY》 (正性)
年 卷 期:2008年第12卷第3期
页 面:407-420页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
主 题:increasing functions Legendre transform inverse-Santalo inequality
摘 要:Let phi : R(n) - R boolean OR {+infinity} be a convex function and L phi be its Legendre tranform. It is proved that if phi is invariant by changes of signs, then integral e(-phi) integral e(-L phi) = 4(n). This is a functional version of the inverse Santalo inequality for unconditional convex bodies due to J. Saint Raymond. The proof involves a general result on increasing functions on R(n) x R(n) together with a functional form of Lozanovskii s lemma. In the last section, we prove that for some c 0, one has always integral e-(phi) integral e(-L phi) = c(n). This generalizes a result of B. Klartag and V. Milman.