版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Coimbra Dept Informat Engn CISUC Polo 2 P-3030290 Coimbra Portugal
出 版 物:《EVOLUTIONARY COMPUTATION》 (调优计算)
年 卷 期:2016年第24卷第3期
页 面:521-544页
核心收录:
学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:Portuguese Foundation for Science and Technology (FCT) European Regional Development Fund (FEDER) through COMPETE-Operational Program for Competitiveness and Internationalization (POCI) iCIS project QREN in the scope of the Mais Centro Program [CENTRO-07-ST24-FEDER-002003] FEDER FCT - European Social Fund [SFHR/BD/77725/2011] Portuguese Ministry of Education and Science
主 题:Hypervolume indicator multiobjective optimization subset selection monotone submodular function greedy algorithm
摘 要:Given a nondominated point set X subset of R-d of size n and a suitable reference point r is an element of R-d, the Hypervolume Subset Selection Problem (HSSP) consists of finding a subset of size k 2 is O(n(d/2) log n + n(n-k)). Since the hypervolume indicator is a monotone submodular function, the HSSP can be approximated to a factor of (1 - 1/e) using a greedy strategy. In this article, greedy O(n(k + log n))-time algorithms for the HSSP in 2 and 3 dimensions are proposed, matching the complexity of current exact algorithms for the 2-dimensional case, and considerably improving upon recent complexity results for this approximation problem.