咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >LOWER BOUNDS FOR EXISTENTIAL P... 收藏

LOWER BOUNDS FOR EXISTENTIAL PEBBLE GAMES AND k-CONSISTENCY TESTS

作     者:Berkholz, Christoph 

作者机构:Rhein Westfal TH Aachen Lehrstuhl Informat 7 Aachen Germany 

出 版 物:《LOGICAL METHODS IN COMPUTER SCIENCE》 (Log. Methods Comp. Sci.)

年 卷 期:2013年第9卷第4期

核心收录:

学科分类:08[工学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:existential pebble game finite variable logic first order logic parameterized complexity theory k-consistency constraint propagation 

摘      要:The existential k-pebble game characterizes the expressive power of the existential- positive k-variable fragment of first-order logic on finite structures. The winner of the existential k-pebble game on two given finite structures can be determined in time O(n(2k)) by dynamic programming on the graph of game configurations. We show that there is no O(n((k-3)/12))-time algorithm that decides which player can win the existential k-pebble game on two given structures. This lower bound is unconditional and does not rely on any complexity-theoretic assumptions. Establishing strong k-consistency is a well-known heuristic for solving the constraint satisfaction problem (CSP). By the game characterization of Kolaitis and Vardi [14] our result implies that there is no O(n((k-3)/12))-time algorithm that decides if strong k-consistency can be established for a given CSP-instance.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分