咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >δ-similar elimination to enhan... 收藏

δ-similar elimination to enhance search performance of multiobjective evolutionary algorithms

δ-Similar 消除将提高 Multiobjective 进化算法的搜索性能

作     者:Aguirre, Hernan Sato, Masahiko Tanaka, Kiyoshi 

作者机构:Shinshu Univ Fac Engn Nagano 3808553 Japan 

出 版 物:《IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS》 (电子信息通信学会汇刊:信息与系统)

年 卷 期:2008年第E91D卷第4期

页      面:1206-1210页

核心收录:

学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:multiobjective evolutionary algorithms delta-similar elimination controlled elitism selection 

摘      要:In this paper, we propose delta-similar elimination to improve the search performance of multiobjective evolutionary algorithms in combinatorial optimization problems. This method eliminates similar individuals in objective space to fairly distribute selection among the different regions of the instantaneous Pareto front. We investigate four eliminating methods analyzing their effects using NSGA-II. In addition, we compare the search performance of NSGA-II enhanced by our method and NSGA-II enhanced by controlled elitism.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分