版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Nagoya Univ Grad Sch Informat Sci Chikusa Ku Furo Cho Nagoya Aichi 4648601 Japan
出 版 物:《ARTIFICIAL LIFE AND ROBOTICS》 (人工生命与机器人)
年 卷 期:2011年第16卷第3期
页 面:373-377页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0811[工学-控制科学与工程]
基 金:Grants-in-Aid for Scientific Research [11J06532] Funding Source: KAKEN
主 题:Co-evolutionary algorithm Probabilistic model-building genetic algorithm Intransitive numbers game
摘 要:We propose an extended co-evolutionary algorithm (CA) with probabilistic model building (CA-PMB) in order to improve the search performance of the CA. This article specifically describes an implementation of CA-PMB called a co-evolutionary algorithm with population-based incremental learning (CA-PBIL), and analyzes the behavior of the algorithm through computational experiments using an intransitive numbers game as a benchmark problem. The experimental results show that desirable co-evolution may be inhibited by the over-specialization effect, and that the algorithm shows complex dynamics caused by the game s intransitivity. However, further experiments show that the intransitivity encourages desirable coevolution when a different learning rate is set for each population.