咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >SUBAPERTURE AUTOFOCUS FOR SYNT... 收藏

SUBAPERTURE AUTOFOCUS FOR SYNTHETIC-APERTURE RADAR

作     者:CALLOWAY, TM DONOHOE, GW 

作者机构:UNIV NEW MEXICOALBUQUERQUENM 87131 

出 版 物:《IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS》 (IEEE Trans. Aerosp. Electron. Syst.)

年 卷 期:1994年第30卷第2期

页      面:617-621页

核心收录:

学科分类:0810[工学-信息与通信工程] 0808[工学-电气工程] 08[工学] 0825[工学-航空宇航科学与技术] 

基  金:U.S. Department of Energy  USDOE  (DE-AC04-76DP0089) 

主  题:error analysis error statistics parameter estimation radar interference radar theory radiofrequency interference signal detection synthetic aperture radar SAR autofocus algorithm cross-range drift degraded SAR image equal-width subapertures full-scene im Radar theory signal acquisition Parameter estimation Polynomial auto-focus Sinusoidal functions Mean square error Rescue Radiofrequency interference Specific absorption rate 

摘      要:A subaperture autofocus algorithm for synthetic aperture radar (SAR) partitions range-compressed phase-history data collected over a full aperture into equal-width subapertures. Application of a one-dimensional Fourier transform to each range bin converts each subaperture data set into a full-scene image (map). Any linear phase difference, or phase ramp, between a pair of subapertures expresses itself as cross-range drift in their maps. A traditional autofocus algorithm fits a polynomial to inferred equal-width phase ramps. If the true phase error function contains significant high-order components, then polynomial regression generates a poor estimate of the phase error function. Instead of fitting a polynomial, we fit a sinusoidal function through the inferred phase ramps. An example with a degraded SAR image shows how a sinusoidal correction improves image quality. We compare lower bounds on mean squared error (MSE) for polynomial and sinusoidal parameterizations. Sinusoidal parameterization reduces MSE significantly for model orders greater than five.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分