咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Approximation algorithms for <... 收藏

Approximation algorithms for <i>k</i>-level stochastic facility location problems

为 k 水平的近似算法随机的设备地点问题

作     者:Melo, Lucas P. Miyazawa, Flavio K. Pedrosa, Lehilton L. C. Schouery, Rafael C. S. 

作者机构:Univ Estadual Campinas Inst Comp Campinas SP Brazil 

出 版 物:《JOURNAL OF COMBINATORIAL OPTIMIZATION》 (组合优化杂志)

年 卷 期:2017年第34卷第1期

页      面:266-278页

核心收录:

学科分类:12[管理学] 120202[管理学-企业管理(含:财务管理、市场营销、人力资源管理)] 0202[经济学-应用经济学] 02[经济学] 1202[管理学-工商管理] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:FAPESP [2013/21744-8] CNPq 

主  题:Approximation algorithm Multilevel facility location problem Stochastic problem 

摘      要:In the k-level facility location problem (FLP), we are given a set of facilities, each associated with one of k levels, and a set of clients. We have to connect each client to a chain of opened facilities spanning all levels, minimizing the sum of opening and connection costs. This paper considers the k-level stochastic FLP, with two stages, when the set of clients is only known in the second stage. There is a set of scenarios, each occurring with a given probability. A facility may be opened in any stage, however, the cost of opening a facility in the second stage depends on the realized scenario. The objective is to minimize the expected total cost. For the stage-constrained variant, when clients must be served by facilities opened in the same stage, we present a -approximation, improving on the 4-approximation by Wang et al. (Oper Res Lett 39(2):160-161, 2011) for each k. In the case with , the algorithm achieves factors 2.56 and 2.78, resp., which improves the -approximation for by Wu et al. (Theor Comput Sci 562:213-226, 2015). For the non-stage-constrained version, we give the first approximation for the problem, achieving a factor of 3.495 for the case with , and in general.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分