咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Cut Pursuit: Fast Algorithms t... 收藏

Cut Pursuit: Fast Algorithms to Learn Piecewise Constant Functions on General Weighted Graphs

作     者:Landrieu, Loic Obozinski, Guillaume 

作者机构:Univ Paris Est ENSG IGN LASTIG MATIS F-94160 St Mande France Univ Paris Est UPEM ESIEE Paris ENPCLIGMUMR 8049CNRS F-77455 Marne La Vallee 2 France 

出 版 物:《SIAM JOURNAL ON IMAGING SCIENCES》 (SIAM J. Imaging Sci.)

年 卷 期:2017年第10卷第4期

页      面:1724-1766页

核心收录:

学科分类:1002[医学-临床医学] 070207[理学-光学] 07[理学] 08[工学] 0835[工学-软件工程] 0803[工学-光学工程] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 0702[理学-物理学] 

基  金:ANR project Semapolis [ANR-13-CORD-0003] Agence Nationale de la Recherche (ANR) [ANR-13-CORD-0003] Funding Source: Agence Nationale de la Recherche (ANR) 

主  题:working set total variation sparsity Mumford-Shah greedy algorithm 

摘      要:We propose working-set/greedy algorithms to efficiently solve problems penalized respectively by the total variation on a general weighted graph and its l(0) counterpart the Mumford Shah total level-set boundary size when the piecewise constant solutions have a small number of distinct level-sets;this is typically the case when the total level-set boundary size is small, which is encouraged by these two forms of penalization. Our algorithms exploit this structure by recursively splitting the level-sets of a piecewise-constant candidate solution using graph cuts. We obtain significant speed-ups over state-of-the-art algorithms for images that are well approximated with few level-sets.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分