版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:INRIA Sophia Antipolis Projet Sinus F-06902 Sophia Antipolis France
出 版 物:《INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS》 (国际计算流体动力学杂志)
年 卷 期:2001年第14卷第4期
页 面:287-304页
核心收录:
学科分类:080704[工学-流体机械及工程] 080103[工学-流体力学] 08[工学] 0807[工学-动力工程及工程热物理] 0702[理学-物理学] 0801[工学-力学(可授工学、理学学位)]
主 题:domain decomposition method Navier-Stokes equations finite elements finite volumes triangular meshes multigrid algorithm parallel computing
摘 要:This paper is concerned with the formulation and the evaluation of a hybrid solution method that makes use of domain decomposition and multigrid principles for the calculation of two-dimensional compressible viscous flows on unstructured triangular meshes. More precisely, a non-overlapping additive domain decomposition method is used to coordinate concurrent subdomain solutions with a multigrid method. This hybrid method is developed in the context of a flow solver for the Navier-Stokes equations which is based on a combined finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi-discrete equations is performed using a linearized backward Euler implicit scheme. As a result, each pseudo time step requires the solution of a sparse linear system. In this study, a non-overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. Algebraically, the Schwarz algorithm is equivalent to a Jacobi iteration on a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In the present approach, the interface unknowns are numerical fluxes. The interface system is solved by means of a full GMRES method. Here, the local system solves that are induced by matrix-vector products with the interface operator, are performed using a multigrid by volume agglomeration method. The resulting hybrid domain decomposition and multigrid solver is applied to the computation of several steady flows around a geometry of NACA0012 airfoil.