版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Indian Inst Technol Gandhinagar Gandhinagar Gujarat India
出 版 物:《JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS》 (J. Micro/ Nanolithogr. MEMS MOEMS)
年 卷 期:2018年第17卷第4期
页 面:1-12页
核心收录:
学科分类:0808[工学-电气工程] 070207[理学-光学] 07[理学] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0803[工学-光学工程] 0702[理学-物理学]
基 金:The authors are thankful to Director Teaching Veterinary Clinical Complex LUVAS Hisar for providing biopsy samples
主 题:lithography process model sample plan clustering algorithm high-dimensional space CM1 model locally linear embedding automatic sample planning and review principal component analysis optical proximity correction
摘 要:The reduction of measurement data and the reduction of time required to select the sample plan are essential for the development of an efficient lithography process model. We have discussed the strengths and weaknesses of existing sample plan selection techniques and proposed a locally linear embedding (LLE)-based sample selection technique. The proposed approach significantly reduces the demand for metrology data and improves the modeling turn-around time without sacrificing the model accuracy and stability. The effectiveness of the proposed methodology is verified by modeling pattern transfer process of critical layers in 14- and 22-nm complementary metal-oxide-semiconductor technologies. The experimental results show that among different sample plan selection techniques, the LLE provides a competitive sample plan choice in a single shot without compromising the accuracy. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)