咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Extension of dynamic matrix co... 收藏

Extension of dynamic matrix control to multiple models

作     者:Aufderheide, B Bequette, BW 

作者机构:Rensselaer Polytech Inst Howard P Isermann Dept Chem Engn Troy NY 12180 USA 

出 版 物:《COMPUTERS & CHEMICAL ENGINEERING》 

年 卷 期:2003年第27卷第8-9期

页      面:1079-1096页

核心收录:

学科分类:0817[工学-化学工程与技术] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:multiple model predictive control dynamic matrix control extended Kalman filter nonlinear estimation 

摘      要:The purpose of the paper is to extend dynamic matrix control (DMC) to handle different operating regimes and to reject parameter disturbances. This is done by two new multiple model predictive control (MMPC) schemes: one based on actual step response tests and the other on a minimal knowledge based first order plus dead time models (FOPDT). Both approaches do not require fundamental modeling. As a benchmark comparison, the two controllers are compared with a nonlinear model predictive controller (NL-MPC) using an extended Kalman filter (EKF) with no initial model/plant mismatch. The application example is the isothermal Van de Vusse reaction, which exhibits challenging input multiplicity. Simulations include disturbances in the feed concentration, kinetic parameters, and additive input and output noise. The two controllers have comparable performance to NL-MPC and in the case of multiple disturbances can outperform NL-MPC. (C) 2003 Elsevier Science Ltd. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分