咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Bivariate tensor product (<i>p... 收藏

Bivariate tensor product (<i>p</i>, <i>q</i>)-analogue of Kantorovich-type Bernstein-Stancu-Schurer operators

作     者:Cai, Qing-Bo Xu, Xiao-Wei Zhou, Guorong 

作者机构:Quanzhou Normal Univ Sch Math & Comp Sci Quanzhou 362000 Peoples R China Xiamen Univ Sch Math Sci Xiamen 361005 Peoples R China Rice Univ Comp Sci Houston TX USA Xiamen Univ Technol Sch Appl Math Xiamen 361024 Peoples R China 

出 版 物:《JOURNAL OF INEQUALITIES AND APPLICATIONS》 (J. Inequal. Appl.)

年 卷 期:2017年第2017卷第1期

页      面:1页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:National Natural Science Foundation of China [11601266, 11626201] Natural Science Foundation of Fujian Province of China [2016J05017] Program for New Century Excellent Talents in Fujian Province University 

主  题:(p, q)-integers Bernstein-Stancu-Schurer operators modulus of continuity Lipschitz continuous functions bivariate tensor product 

摘      要:In this paper, we construct a bivariate tensor product generalization of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of (p, q)-integers. We obtain moments and central moments of these operators, give the rate of convergence by using the complete modulus of continuity for the bivariate case and estimate a convergence theorem for the Lipschitz continuous functions. We also give some graphs and numerical examples to illustrate the convergence properties of these operators to certain functions.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分