咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Mathematical properties of opt... 收藏

Mathematical properties of optimization problems defined by positively homogeneous functions

优化问题的数学性质由确实同类的功能定义

作     者:Lasserre, JB Hiriart-Urruty, JB 

作者机构:CNRS LAAS F-31077 Toulouse France Univ Toulouse 3 Dept Math F-31062 Toulouse France 

出 版 物:《JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS》 (优选法理论与应用杂志)

年 卷 期:2002年第112卷第1期

页      面:31-52页

核心收录:

学科分类:1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070104[理学-应用数学] 0701[理学-数学] 

主  题:nonlinear programming homogeneous programming global optimization 

摘      要:We consider the nonlinear programming problem (sic)--{min f(x)\g(i)(x)less than or equal tob(i), i-1,...,m} with f positively p-homogeneous and g(i) positively q-homogeneous functions. We show that (sic) admits a simple min-max formulation (sic) with the inner max-problem being a trivial linear program with a single constraint. This provides a new formulation of the linear programming problem and the linear-quadratic one as well. In particular, under some conditions, a global (nonconvex) optimization problem with quadratic data is shown to be equivalent to a convex minimization problem.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分