版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Moscow MV Lomonosov State Univ Fac Mech & Math Moscow 119899 Russia
出 版 物:《MATHEMATICA SLOVACA》 (斯洛伐克数学)
年 卷 期:2009年第59卷第3期
页 面:307-314页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
主 题:Euler's constant irrationality hypergeometric linear forms in logarithms
摘 要:Using an integral of a hypergeometric function, we give necessary and sufficient conditions for irrationality of Euler s constant gamma. The proof is by reduction to known irrationality criteria for gamma involving a Beukers-type double integral. We show that the hypergeometric and double integrals are equal by evaluating them. To do this, we introduce a construction of linear forms in 1, gamma, and logarithms from Nesterenko-type series of rational functions. In the Appendix, S. Zlobin gives a change-of-variables proof that the series and the double integral are equal.