咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A hypergeometric approach, via... 收藏

A hypergeometric approach, via linear forms involving logarithms, to criteria for irrationality of Euler's constant

一条亢奋的几何途径经由包含对数的线性形式,到为 Euler 鈥檚 的荒唐的标准经常

作     者:Sondow, Jonathan Zlobin, Sergey 

作者机构:Moscow MV Lomonosov State Univ Fac Mech & Math Moscow 119899 Russia 

出 版 物:《MATHEMATICA SLOVACA》 (斯洛伐克数学)

年 卷 期:2009年第59卷第3期

页      面:307-314页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Euler's constant irrationality hypergeometric linear forms in logarithms 

摘      要:Using an integral of a hypergeometric function, we give necessary and sufficient conditions for irrationality of Euler s constant gamma. The proof is by reduction to known irrationality criteria for gamma involving a Beukers-type double integral. We show that the hypergeometric and double integrals are equal by evaluating them. To do this, we introduce a construction of linear forms in 1, gamma, and logarithms from Nesterenko-type series of rational functions. In the Appendix, S. Zlobin gives a change-of-variables proof that the series and the double integral are equal.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分