版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Graz Tech Univ Math Inst A-8010 Graz Austria
出 版 物:《MONATSHEFTE FUR MATHEMATIK》 (数学月刊)
年 卷 期:2001年第132卷第4期
页 面:325-339页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
主 题:Thue equations Diophantine equation linear forms in logarithms
摘 要:In a recent paper [7] the author considered the family of parametrized Thue equations F-a (X, Y) := Pi (n)(i=1) (X - P-i(a)Y) - Y-n = +/-1, a is an element of N for monic polynomials p(1),...,p(n) is an element of Z[a] which satisfy degp(1) ... degp(n). Under some technical conditions it could be proved that there is a computable constant a(0) = a(0)(p(1),...,P-n) such that for all integers a greater than or equal to a(0) the only integer solutions (x, y) of the Diophantine equation satisfy /y/ less than or equal to 1. In this paper, we give an explicit expression for a(0) depending on the polynomials p(1),...,p(n).