版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Los Alamos Natl Lab Los Alamos NM 87545 USA
出 版 物:《MACHINE LEARNING》 (机器学习)
年 卷 期:2003年第51卷第1期
页 面:51-71页
核心收录:
学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:U.S. Department of Energy, USDOE Los Alamos National Laboratory, LANL
主 题:support vector machines polynomial-time algorithms decomposition algorithms
摘 要:This paper studies the convergence properties of a general class of decomposition algorithms for support vector machines (SVMs). We provide a model algorithm for decomposition, and prove necessary and sufficient conditions for stepwise improvement of this algorithm. We introduce a simple rate certifying condition and prove a polynomial-time bound on the rate of convergence of the model algorithm when it satisfies this condition. Although it is not clear that existing SVM algorithms satisfy this condition, we provide a version of the model algorithm that does. For this algorithm we show that when the slack multiplier C satisfies root1/2 less than or equal to Cless than or equal to mL, where m is the number of samples and L is a matrix norm, then it takes no more than 4LC(2)m(4)/epsilon iterations to drive the criterion to within epsilon of its optimum.