咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Polynomial-time decomposition ... 收藏

Polynomial-time decomposition algorithms for support vector machines

为支持向量机的多项式时间分解算法

作     者:Hush, D Scovel, C 

作者机构:Los Alamos Natl Lab Los Alamos NM 87545 USA 

出 版 物:《MACHINE LEARNING》 (机器学习)

年 卷 期:2003年第51卷第1期

页      面:51-71页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:U.S. Department of Energy, USDOE Los Alamos National Laboratory, LANL 

主  题:support vector machines polynomial-time algorithms decomposition algorithms 

摘      要:This paper studies the convergence properties of a general class of decomposition algorithms for support vector machines (SVMs). We provide a model algorithm for decomposition, and prove necessary and sufficient conditions for stepwise improvement of this algorithm. We introduce a simple rate certifying condition and prove a polynomial-time bound on the rate of convergence of the model algorithm when it satisfies this condition. Although it is not clear that existing SVM algorithms satisfy this condition, we provide a version of the model algorithm that does. For this algorithm we show that when the slack multiplier C satisfies root1/2 less than or equal to Cless than or equal to mL, where m is the number of samples and L is a matrix norm, then it takes no more than 4LC(2)m(4)/epsilon iterations to drive the criterion to within epsilon of its optimum.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分