版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:RCERT Nagpur Univ Dept Comp Sci Chandrapur India Natl Inst Hydrol Environm Hydrol Div Roorkee Uttar Pradesh India
出 版 物:《JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING》 (印度遥感学会杂志)
年 卷 期:2014年第42卷第2期
页 面:435-437页
核心收录:
学科分类:0830[工学-环境科学与工程(可授工学、理学、农学学位)] 070801[理学-固体地球物理学] 07[理学] 08[工学] 0708[理学-地球物理学] 0816[工学-测绘科学与技术]
主 题:Remote sensing Classification algorithm Satellite image BTC etc.
摘 要:In the present era of modern technology, the efficacy and accuracy of output is demanding. Based on rigorous survey, Bharatkar and Patel (International Journal of Advanced Research in Computer Science 3(7):218-223, 2012) concluded that the incorporation of Block Truncation Coding (BTC) approach in the existing image classification algorithm can be used to improve the classification accuracy. Therefore, in the present study, an effort has been made to explore the Content Based Remote Sensing Image (CBRSI) classification algorithm to enhance classification accuracy with BTC approach. It is revealed from the study that BTC based maximum likelihood classifier gives better overall accuracy and kappa statistics.