版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Johannes Kepler Univ Linz Inst Algebra A-4040 Linz Austria Univ Tartu Inst Math EE-50090 Tartu Estonia
出 版 物:《MONATSHEFTE FUR MATHEMATIK》 (数学月刊)
年 卷 期:2010年第159卷第4期
页 面:341-359页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Estonian Science Foundation Johannes Kepler Universitat Linz Austrian Science Fund [J2637-N18] University of Colorado at Boulder
主 题:Clones of operations Polynomial functions Congruence permutable varieties Congruence distributive varieties
摘 要:A congruence preserving function on a subdirect product of two finite Mal cev algebras is polynomial if it induces polynomial functions on the subdirect factors and there are no skew congruences between the projection kernels. As a special case, if the direct product A x B of finite algebras A and B in a congruence permutable variety has no skew congruences, then the polynomial functions on A x B are exactly direct products of polynomials on A and on B. These descriptions apply in particular to classical polynomial functions on nonassociative rings. Also, for finite algebras A, B in a variety with majority term, the polynomial functions on A x B are exactly the direct products of polynomials on A and on B. However in arbitrary congruence distributive varieties the corresponding result is not true.