版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Balochistan Dept Comp Sci & Informat Technol Quetta Pakistan Lahore Coll Women Univ Dept Comp Sci Lahore Pakistan
出 版 物:《MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY》
年 卷 期:2017年第36卷第2期
页 面:209-224页
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学]
基 金:National Institute of Informatics Tokyo
主 题:Dimensionality Reduction Center Symmetric Local Binary Pattern Q-CSLBP Image Retrieval Descriptor
摘 要:In this paper, we propose simple and effective compression of CSLBP (Center Symmetric Local Binary Pattern) descriptors, which is a textured based operator and mostly used as key point descriptor. With default parameters for computation, it is 256-length descriptor for each keypoint or affine patch. CSLBP is an extended form of LBP (Local Binary Patterns). The calculation of CSLBP descriptor is effective, robust, and straightforward for different image transformations for instance;image blurring and illumination alteration. However, an improvement in time and space consumption of CSLBP can be attained by means of simple compression. For this reason, CSLBP is a smart choice for smart phones as well as large databases. We reduce the descriptor length (dimensions) upto 50% without applying any techniques of dimensionality reduction like PCA (Principle Component Analysis) or LDA (Linear Discriminant Analysis). The compressed CSLBP descriptor is denoted as C-CSLBP. The performance of C-CSLBP is evaluated on state-of-the-art datasets using standard metrics. It is quantitatively shown by experiments that C-CSLBP is equivalently effective compared to CSLBP despite of reduced dimensions.