咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Direct and inverse theorems on... 收藏

Direct and inverse theorems on the approximation of functions by Fourier-Laplace sums in the spaces <i>S</i> <SUP>(<i>p,q</i>)</SUP>(σ <SUP><i>m</i>-1</SUP>)

由在空格 S 的 FourierLaplace 和的函数的近似上的直接、反的定理(p, q )(m1 )

作     者:Lasuriya, R. A. 

作者机构:Abkhaz State Univ Sukhumi Georgia 

出 版 物:《MATHEMATICAL NOTES》 (数学札记)

年 卷 期:2015年第98卷第3-4期

页      面:601-612页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:approximation of functions Fourier-Laplace sum the spaces S(p-q)(sigma(m-1)) modulus of continuity Parseval's equality Jackson-type inequality Gegenbauer polynomial Bernstein-Stechkin-Timan-type inequality 

摘      要:In this paper, we prove direct and inverse theorems on the approximation of functions by Fourier-Laplace sums in the spaces S ((p,q))(sigma (m-1)), m a parts per thousand yen 3, in terms of best approximations and moduli of continuity and consider the constructive characteristics of function classes defined by the moduli of continuity of their elements. The given statements generalize the results of the author s work carried out in 2007.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分