咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Mapping multi-class cancers an... 收藏

Mapping multi-class cancers and clinical outcomes prediction for multiple classifications of microarray gene expression data

为微数组基因表达式数据的多重分类印射多班癌症和临床的结果预言

作     者:Kim, Yong Su Hwang, Sun Jin Oh, Jong Min Whang, Gye Dae Yoo, Chang Kyoo 

作者机构:Kyung Hee Univ Ctr Environm Studies Dept Environm Sci & Engn Coll Engn Suwon 446701 South Korea 

出 版 物:《KOREAN JOURNAL OF CHEMICAL ENGINEERING》 (韩国化工杂志)

年 卷 期:2009年第26卷第4期

页      面:969-979页

核心收录:

学科分类:081704[工学-应用化学] 0817[工学-化学工程与技术] 08[工学] 0703[理学-化学] 

基  金:Korean Government (MOEHRD) [KRF-2007-331-D00089] Seoul RBD Program [CS070160] 

主  题:Bioinformatics Cancer Classification Clinical Outcome Hierarchical Framework Generative Topographic Mapping Microarray Gene Expression 

摘      要:DNA microarray analysis of gene expression is useful for discriminating between the various subtypes of cancer, which is necessary for the accurate diagnosis and treatment of patients. Particularly, assigning biological samples into subclasses or obtaining detailed phenotypes is an important practical application for microarray gene expression profiles. In the present study, a hierarchical framework of a nonlinear mapping classification was developed for elucidating data and classifying multiclass cancers based on microarray data sets. This classification maps the gene expression profiles of multi-class cancers to the visualized latent space and predicts the clinical output through high-dimensional computational biology. The proposed method was used to interpret and analyze four leukemia subtypes from microarray data. The results demonstrate that, using a high-dimensional nonlinear mapping to extract biological insights from microarray data, the proposed method can identify leukemia subtypes on the basis of molecular-level monitoring and improve the interpretability of leukemia clinical outputs. Furthermore, this nonlinear mapping of cancer subtypes is used to establish a relationship between expression-based subclasses of leukemia tumors and leukemia patient treatment outcomes. The proposed method may be used to guide efficient and effective approaches for the treatment of leukemia subclasses.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分