咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Generalized linear mixed model... 收藏

Generalized linear mixed models with informative dropouts and missing covariates

与增进知识的退学学生和失踪的 covariates 一起的概括线性混合模型

作     者:Wu, Kunling Wu, Lang 

作者机构:Univ British Columbia Dept Stat Vancouver BC V6T 1Z2 Canada Harvard Univ Sch Publ Hlth Ctr Biostat AIDS Res Boston MA 02115 USA 

出 版 物:《METRIKA》 (米制)

年 卷 期:2007年第66卷第1期

页      面:1-18页

核心收录:

学科分类:0202[经济学-应用经济学] 02[经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 

主  题:PX-EM algorithm Gibbs sampling linearization rejection sampling 

摘      要:Generalized linear mixed models (GLMM) are useful in many longitudinal data analyses. In the presence of informative dropouts and missing covariates, however, standard complete-data methods may not be applicable. In this article, we consider a likelihood method and an approximate method for GLMM with informative dropouts and missing covariates. The methods are implemented by Monte-Carlo EM algorithms combined with Gibbs sampler. The approximate method may lead to inconsistent estimators but is computationally more efficient than the likelihood method. The two methods are evaluated via a simulation study for longitudinal binary data, and appear to perform reasonably well. A dataset on mental distress is analyzed in details.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分