咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Kernels and distances for stru... 收藏

Kernels and distances for structured data

为结构化的数据的核和距离

作     者:Gärtner, T Lloyd, JW Flach, PA 

作者机构:Fraunhofer Inst Autonome Intelligent Syst St Augustin Germany Univ Bristol Dept Comp Sci Bristol BS8 1TH Avon England Univ Bonn Dept Comp Sci 3 D-5300 Bonn Germany Australian Natl Univ Res Sch Informat Sci & Engn Canberra ACT Australia 

出 版 物:《MACHINE LEARNING》 (机器学习)

年 卷 期:2004年第57卷第3期

页      面:205-232页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:kernel methods structured data inductive logic programming higher-order logic instance-based learning 

摘      要:This paper brings together two strands of machine learning of increasing importance: kernel methods and highly structured data. We propose a general method for constructing a kernel following the syntactic structure of the data, as defined by its type signature in a higher-order logic. Our main theoretical result is the positive definiteness of any kernel thus defined. We report encouraging experimental results on a range of real-world data sets. By converting our kernel to a distance pseudo-metric for 1-nearest neighbour, we were able to improve the best accuracy from the literature on the Diterpene data set by more than 10%.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分