版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Tennessee Dept Mech Aerosp & Biomed Engn Electrochem Energy Storage & Convers Lab Knoxville TN 37996 USA WL Gore & Assoc Inc Elkton MD 21921 USA Oak Ridge Natl Lab Energy & Transportat Sci Div Oak Ridge TN 37831 USA
出 版 物:《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》
年 卷 期:2016年第163卷第8期
页 面:F933-F944页
核心收录:
学科分类:081704[工学-应用化学] 07[理学] 070304[理学-物理化学(含∶化学物理)] 08[工学] 0817[工学-化学工程与技术] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学]
基 金:Department of Energy (DOE) [DE-FC36-086018052] University of Tennessee
主 题:mass transport Online resources Operating conditions flux Water Management POLYMER ELECTROLYTE FUEL CELLS Anodes temperature gradients control parameter
摘 要:For polymer electrolyte fuel cells (PEFCs) operating at very high current, prevention of anode dry-out through enhanced back flux of water and restriction of evaporation is required. In this work, back flux of water to the anode is engineered using an asymmetric anode and cathode micro-porous layer (MPL) configuration. Extensive experimental tests have been conducted to study the impact of thermal and mass transport resistances on the net water flux coefficient for extremes of wet and dry operating conditions. The net water drag co-efficient was measured in the range of -0.17 to +0.18 depending on the operating conditions and material configurations. A simplified model has also been developed to investigate the effect of temperature gradient on the net water drag coefficient. It is shown that with an asymmetric configuration, the net flux of water can be reversed under certain conditions, greatly enhancing high current density performance. For wet operating conditions, the cell configuration with asymmetric mass transport resistance can be utilized to tailor the back flux of water. For dry operating conditions, the thermal resistance is the key controlling parameter to affect the net water drag. (C) The Author(s) 2016. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://***/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@***. All rights reserved.