版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Russian Acad Sci Inst Math & Mech Ural Branch Ekaterinburg Russia
出 版 物:《MATHEMATICAL NOTES》 (数学札记)
年 卷 期:2013年第93卷第1-2期
页 面:12-28页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Program for Basic Research "Dynamical Systems and Control Theory" of the Presidium Ural Branch of the Russian Academy of Sciences [12-P-1-1022] Russian Foundation for Basic Research [11-01-00347]
主 题:approximation of a function Jackson-Stechkin inequality trigonometric polynomial the space L-2 Tietze-Urysohn theorem modulus of continuity extremal function
摘 要:This paper deals with the continuity of the sharp constant K(T,X) with respect to the set T in the Jackson-Stechkin inequality E(f, L) = K (T, X)omega(f, T, X), where E(f,L) is the best approximation of the function f a X by elements of the subspace L aS, X, and omega is a modulus of continuity, in the case where the space L (2)(, a,) is taken for X and the subspace of functions g a L (2)(, a,), for L. In particular, it is proved that the sharp constant in the Jackson-Stechkin inequality is continuous in the case where L is the space of trigonometric polynomials of nth order and the modulus of continuity omega is the classical modulus of continuity of rth order.