咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >One-class learning and concept... 收藏

One-class learning and concept summarization for data streams

为数据的一个类的学习和概念摘要流

作     者:Zhu, Xingquan Ding, Wei Yu, Philip S. Zhang, Chengqi 

作者机构:Univ Technol Sydney Ctr Quantum Computat & Intelligent Syst Fac Eng & Informat Technol Sydney NSW 2007 Australia Florida Atlantic Univ Dept Comp Sci & Engn Boca Raton FL 33431 USA Univ Massachusetts Dept Comp Sci Boston MA 02125 USA Univ Illinois Dept Comp Sci Chicago IL 60680 USA 

出 版 物:《KNOWLEDGE AND INFORMATION SYSTEMS》 (知识和信息系统季刊)

年 卷 期:2011年第28卷第3期

页      面:523-553页

核心收录:

学科分类:0711[理学-系统科学] 07[理学] 08[工学] 070105[理学-运筹学与控制论] 081101[工学-控制理论与控制工程] 0701[理学-数学] 071101[理学-系统理论] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:National Science Foundation, NSF, (IIS-0905215) National Science Foundation, NSF Australian Research Council, ARC, (DP1093762) Australian Research Council, ARC 

主  题:Stream data mining One-class learning Classification Clustering 

摘      要:In this paper, we formulate a new research problem of concept learning and summarization for one-class data streams. The main objectives are to (1) allow users to label instance groups, instead of single instances, as positive samples for learning, and (2) summarize concepts labeled by users over the whole stream. The employment of the batch-labeling raises serious issues for stream-oriented concept learning and summarization, because a labeled instance group may contain non-positive samples and users may change their labeling interests at any time. As a result, so the positive samples labeled by users, over the whole stream, may be inconsistent and contain multiple concepts. To resolve these issues, we propose a one-class learning and summarization (OCLS) framework with two major components. In the first component, we propose a vague one-class learning (VOCL) module for concept learning from data streams using an ensemble of classifiers with instance level and classifier level weighting strategies. In the second component, we propose a one-class concept summarization (OCCS) module that uses clustering techniques and a Markov model to summarize concepts labeled by users, with only one scanning of the stream data. Experimental results on synthetic and real-world data streams demonstrate that the proposed VOCL module outperforms its peers for learning concepts from vaguely labeled stream data. The OCCS module is also able to rebuild a high-level summary for concepts marked by users over the stream.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分