咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Analysis of alternative digit ... 收藏

Analysis of alternative digit sets for nonadjacent representations

为 Nonadjacent 代表的其他的位集合的分析

作     者:Heuberger, C Prodinger, H 

作者机构:Graz Tech Univ Inst Math A-8010 Graz Austria Univ Stellenbosch Dept Math ZA-7602 Stellenbosch South Africa 

出 版 物:《MONATSHEFTE FUR MATHEMATIK》 (数学月刊)

年 卷 期:2006年第147卷第3期

页      面:219-248页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:signed digit expansion nonadjacent form alternative digit sets optimality of digit expansions transducers analysis of algorithms Hausdorff dimension 

摘      要:It is known that every positive integer n can be represented as a finite sum of the form Sigma(i)a(i)2(i), where a(i) is an element of {0, 1, -1} and no two consecutive a(i) s are non-zero (nonadjacent form , NAF). Recently, Muir and Stinson [14, 15] investigated other digit sets of the form {0, 1, x}, such that each integer has a nonadjacent representation (such a number x is called admissible). The present paper continues this line of research. The topics covered include transducers that translate the standard binary representation into such a NAF and a careful topological study of the (exceptional) set (which is of fractal nature) of those numbers where no finite look-ahead is sufficient to construct the NAF from left-to-right, counting the number of digits 1 (resp. x) in a (random) representation, and the non-optimality of the representations if x is different from 3 or -1.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分