咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Polynomial functions on upper ... 收藏

Polynomial functions on upper triangular matrix algebras

上面的三角形的矩阵代数学上的多项式功能

作     者:Frisch, Sophie 

作者机构:Graz Univ Technol Inst Math Kopernikusgasse 24 A-8010 Graz Austria 

出 版 物:《MONATSHEFTE FUR MATHEMATIK》 (数学月刊)

年 卷 期:2017年第184卷第2期

页      面:201-215页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:Graz University of Technology 

主  题:Integer-valued polynomials Null polynomials Zero polynomials Polynomial functions Upper triangular matrices Matrix algebras Polynomials on non-commutative algebras Matrices over commutative rings 

摘      要:There are two kinds of polynomial functions on matrix algebras over commutative rings: those induced by polynomials with coefficients in the algebra itself and those induced by polynomials with scalar coefficients. In the case of algebras of upper triangular matrices over a commutative ring, we characterize the former in terms of the latter (which are easier to handle because of substitution homomorphism). We conclude that the set of integer-valued polynomials with matrix coefficients on an algebra of upper triangular matrices is a ring, and that the set of null-polynomials with matrix coefficients on an algebra of upper triangular matrices is an ideal.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分