版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Graz Univ Technol Inst Math Kopernikusgasse 24 A-8010 Graz Austria
出 版 物:《MONATSHEFTE FUR MATHEMATIK》 (数学月刊)
年 卷 期:2017年第184卷第2期
页 面:201-215页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Graz University of Technology
主 题:Integer-valued polynomials Null polynomials Zero polynomials Polynomial functions Upper triangular matrices Matrix algebras Polynomials on non-commutative algebras Matrices over commutative rings
摘 要:There are two kinds of polynomial functions on matrix algebras over commutative rings: those induced by polynomials with coefficients in the algebra itself and those induced by polynomials with scalar coefficients. In the case of algebras of upper triangular matrices over a commutative ring, we characterize the former in terms of the latter (which are easier to handle because of substitution homomorphism). We conclude that the set of integer-valued polynomials with matrix coefficients on an algebra of upper triangular matrices is a ring, and that the set of null-polynomials with matrix coefficients on an algebra of upper triangular matrices is an ideal.