咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Disc Covering Problem with App... 收藏

Disc Covering Problem with Application to Digital Halftoning

有到数字 Halftoning 的申请的圆盘盖住问题

作     者:Asano, Tetsuo Brass, Peter Sasahara, Shinji 

作者机构:JAIST Sch Informat Sci Tatsunokuchi Ishikawa 9231292 Japan CUNY City Coll Dept Comp Sci New York NY 10031 USA Fuji Xerox Co Ltd Kanagawa 2590157 Japan 

出 版 物:《THEORY OF COMPUTING SYSTEMS》 (计算系统理论)

年 卷 期:2010年第46卷第2期

页      面:157-173页

核心收录:

学科分类:07[理学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 070101[理学-基础数学] 

基  金:Ministry of Education  Science  Sports and Culture 

主  题:Approximation algorithm Computational geometry Digital halftoning Voronoi diagram 

摘      要:This paper considers the following geometric optimization problem: Input is a matrix R=(r (ij) ). Each entry r (ij) represents a radius of a disc with its center at (i,j) in the plane. We want to choose discs in such a way that the total area covered by exactly one disc is maximized. This problem is closely related to digital halftoning, a technique to convert a continuous-tone image into a binary image for printing. An exact algorithm is given for the one-dimensional version of the problem while approximation algorithms are given for the two-dimensional one. The approximation algorithms are verified to be satisfactory in practice through experiments in applications to digital halftoning.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分