咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >ON SOLVING ENERGY-DEPENDENT PA... 收藏

ON SOLVING ENERGY-DEPENDENT PARTITIONED REAL SYMMETRIC MATRIX EIGENVALUE PROBLEM BY A PARALLEL GENETIC ALGORITHM

在解决以后,精力依赖者由一个平行基因算法划分了真实对称的矩阵特征值问题

作     者:Sharma, Rahul Nandy, Subhajit Bhattacharyya, S. P. 

作者机构:Indian Assoc Cultivat Sci Dept Phys Chem Kolkata 700032 India Andrews High HS Sch Kolkata 700031 India 

出 版 物:《JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY》 (理论与计算化学杂志)

年 卷 期:2008年第7卷第6期

页      面:1103-1120页

核心收录:

学科分类:07[理学] 0703[理学-化学] 

基  金:DST  Government of India  New Delhi 

主  题:Symmetric matrix eigenvalue problem parallel genetic algorithm partitioning techniques energy-dependent partitioning Lowdin's method 

摘      要:An energy-dependent partitioning scheme is explored for extracting a small number of eigenvalues of a real symmetric matrix with the help of a serial as well as parallel genetic algorithm (GA). The proposed method is tested on two matrices (up to 2000 x 2000) with an increasing number of processors in a master- slave architecture. A comparison is made with the Jacobi-Davidson method in serial mode as implemented in the JDQZ-package. Different partition sizes are used. Traditionally used Lowdin s method is also tested in both serial and parallel modes. The advantages and disadvantages of the parallel GA-based method in solving the partitioned eigenvalue problem are analyzed.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分