版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Bremen TZI Ctr Comp Technol Digital Media Image Proc D-28359 Bremen Germany
出 版 物:《MULTIMEDIA TOOLS AND APPLICATIONS》 (多媒体工具和应用)
年 卷 期:2005年第27卷第2期
页 面:229-250页
核心收录:
学科分类:0808[工学-电气工程] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:image retrieval color matching similarity search query by example
摘 要:The text searching paradigm still prevails even when users are looking for image data for example in the Internet. Searching for images mostly means searching on basis of annotations that have been made manually. When annotations are left empty, which is usually the case, searches on image file names are performed. This may lead to surprising retrieval results. The graphical search paradigm, searching image data by querying graphically, either with an image or with a sketch, currently seems not to be the preferred method partly because of the complexity in designing the query. In this paper we present our PictureFinder system, which currently supports full image retrieval in analogy to full text retrieval. PictureFinder allows graphical queries for the image the user has in his mind by sketching colored and/or textured regions or by whole images (query by example). By adjusting the search tolerances for each region and image feature (i.e. hue, saturation, lightness, texture pattern and coverage) the user can tune his query either to find images matching his sketch or images which differing from the specified colors and/or textures to a certain degree. To compare colors we propose a color distance measure that takes into account the fact that different colors spread differently in the color space, and which take into account that the position of a region in an image may be important. Furthermore, we show our query by example approach. Based on the example image chosen by the user, a graphical query is generated automatically and presented to the user. One major advantage of this approach is the possibility to change and adjust a query by example in the same way as a query which was sketched by the user. By deleting unimportant regions and by adjusting the tolerances of the remaining regions the user may focus on image details which are important to him.