版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:UNIV WATERLOODEPT COMP SCIWATERLOO N2L 3G1ONTARIOCANADA
出 版 物:《PARALLEL COMPUTING》 (并行计算)
年 卷 期:1993年第19卷第3期
页 面:243-256页
核心收录:
学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:National Aeronautics and Space Administration, NASA, (NAGW-1457) Natural Sciences and Engineering Research Council of Canada, NSERC, (OGP0008111, OGP0121352) University of Waterloo, UW
主 题:LINEAR ALGEBRA MATRIX INVERSION GAUSS-JORDAN ALGORITHM DISTRIBUTED-MEMORY MULTIPROCESSOR INTEL IPSC/1860
摘 要:In this paper we propose a new medium-grain parallel algorithm for computing a matrix inverse on a hypercube multiprocessor. The algorithm implements Gauss-Jordan inversion with column interchanges. The hypercube network is configured as a two-dimensional subcube-grid to support submatrix partitionings. For some algorithms on some types of hypercubes, submatrix partitionings are known to have communication advantages not shared by partitions limited to rows or columns We show that such advantages can be extended to Gauss-Jordan inversion on an Intel iPSC/860, the most current third-generation of hypercubes, and that there is little extra programming effort to include it in the subcube-grid library used in various other matrix computations. An actual aggregate execution rate of 200 MFLOPS (Million Floating-point Operation Per Second) is achieved when inverting a 2000 X 2000 matrix (in double-precision Fortran 77) using 64 iPSC/860 processors configured as an 8 X 8 subcube-grid.