咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Incremental least squares meth... 收藏

Incremental least squares methods and the extended Kalman filter

增长最少的广场方法和扩大 Kalman 过滤器

作     者:Bertsekas, DP 

作者机构:Dept. of Elec. Eng. and Comp. Sci. Massachusetts Inst. of Technology Cambridge MA 02139 United States 

出 版 物:《SIAM JOURNAL ON OPTIMIZATION》 (工业与应用数学会最优化杂志)

年 卷 期:1996年第6卷第3期

页      面:807-822页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

主  题:optimization least squares Kalman filter 

摘      要:In this paper we propose and analyze nonlinear least squares methods which process the data incrementally, one data block at a time. Such methods are well suited for large data sets and real time operation and have received much attention in the context of neural network training problems. We focus on the extended Kalman filter, which may be viewed as an incremental version of the Gauss-Newton method. We provide a nonstochastic analysis of its convergence properties, and we discuss variants aimed at accelerating its convergence.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分