版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Indian Inst Technol Dept Elect Engn Delhi India Univ Florida Dept Mech & Aerosp Engn Gainesville FL USA Univ Calif Santa Barbara Ctr Control Dynam Syst & Computat CCDC Santa Barbara CA 93106 USA Univ Texas Arlington Automat & Robot Res Inst Ft Worth TX 76118 USA
出 版 物:《AUTOMATICA》 (自动学)
年 卷 期:2013年第49卷第1期
页 面:82-92页
核心收录:
学科分类:0711[理学-系统科学] 0808[工学-电气工程] 07[理学] 08[工学] 070105[理学-运筹学与控制论] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 0701[理学-数学] 071101[理学-系统理论]
基 金:NSF [0547448, 0901491] Department of Energy, DOE University Research Program in Robotics (URPR) [DE-FG04-86NE37967] Direct For Computer & Info Scie & Enginr Div Of Information & Intelligent Systems Funding Source: National Science Foundation Directorate For Engineering Div Of Electrical, Commun & Cyber Sys [1128050, 0901491] Funding Source: National Science Foundation
主 题:Learning control Adaptive control Optimal control Approximate dynamic programming Actor-critic-identifier
摘 要:An online adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem for continuous-time uncertain nonlinear systems. A novel actor-critic-identifier (ACI) is proposed to approximate the Hamilton-Jacobi-Bellman equation using three neural network (NN) structures actor and critic NNs approximate the optimal control and the optimal value function, respectively, and a robust dynamic neural network identifier asymptotically approximates the uncertain system dynamics. An advantage of using the ACI architecture is that learning by the actor, critic, and identifier is continuous and simultaneous, without requiring knowledge of system drift dynamics. Convergence of the algorithm is analyzed using Lyapunov-based adaptive control methods. A persistence of excitation condition is required to guarantee exponential convergence to a bounded region in the neighborhood of the optimal control and uniformly ultimately bounded (UUB) stability of the closed-loop system. Simulation results demonstrate the performance of the actor-critic-identifier method for approximate optimal control. (C) 2012 Elsevier Ltd. All rights reserved.