版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
出 版 物:《SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING》 (工业与应用数学会科学计算杂志)
年 卷 期:1986年第7卷第1期
页 面:212-229页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:QR algorithm Hamiltonian matrices symplectic matrices algebraic Riccati equation optimal control
摘 要:This paper presents a variant $QR$ algorithm for calculating a Hamiltonian–Schur decomposition [10]. It is defined for Hamiltonian matrices that arise from single input control systems. Numerical stability and Hamiltonian structure are preserved by using unitary symplectic similarity transformations. Following a finite step reduction to a Hessenberg-like condensed form, a sequence of similarity transformations yields a permuted triangular matrix. As the iteration converges, it deflates into problems of lower dimension. Convergence is accelerated by varying a scalar shift. When the Hamiltonian matrix is real, complex arithmetic can be avoided by using an implicit double shift technique. The Hamiltonian-Schur decomposition yields the same invariant subspace information as a Schur decomposition but requires significantly less work and storage for problems of size greater than about 20.