咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A HAMILTONIAN QR ALGORITHM 收藏

A HAMILTONIAN QR ALGORITHM

一个 Hamiltonian $QR$ 算法

作     者:BYERS, R 

出 版 物:《SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING》 (工业与应用数学会科学计算杂志)

年 卷 期:1986年第7卷第1期

页      面:212-229页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

主  题:QR algorithm Hamiltonian matrices symplectic matrices algebraic Riccati equation optimal control 

摘      要:This paper presents a variant $QR$ algorithm for calculating a Hamiltonian–Schur decomposition [10]. It is defined for Hamiltonian matrices that arise from single input control systems. Numerical stability and Hamiltonian structure are preserved by using unitary symplectic similarity transformations. Following a finite step reduction to a Hessenberg-like condensed form, a sequence of similarity transformations yields a permuted triangular matrix. As the iteration converges, it deflates into problems of lower dimension. Convergence is accelerated by varying a scalar shift. When the Hamiltonian matrix is real, complex arithmetic can be avoided by using an implicit double shift technique. The Hamiltonian-Schur decomposition yields the same invariant subspace information as a Schur decomposition but requires significantly less work and storage for problems of size greater than about 20.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分